Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
VacciMonitor ; 32 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2284839

ABSTRACT

The coronavirus disease-19 pandemic with the characteristics of asymptomatic condition, long incubation period and poor treatment has influenced the entire globe. Coronaviruses are important emergent pathogens, specifically, the recently emerged sever acute respiratory syndrome coronavirus 2, the causative virus of the current COVID-19 pandemic. To mitigate the virus and curtail the infection risk, vaccines are the most hopeful solution. The protein structure and genome sequence of SARS-CoV-2 were processed and provided in record time;providing feasibility to the development of COVID-19 vaccines. In an unprecedented scientific and technological effort, vaccines against SARS-CoV-2 have been developed in less than one year. This review addresses the approaches adopted for SARS-CoV-2 vaccine development and the effectiveness of the currently approved vaccines.Copyright © 2023, Finlay Ediciones. All rights reserved.

2.
Russian Journal of Infection and Immunity ; 12(6):1051-1060, 2022.
Article in Russian | EMBASE | ID: covidwho-2263965

ABSTRACT

Currently, as the SARS-CoV-2 pandemic evolves, there has been increasingly more attention paid to building natural and vaccine-induced immunity against SARS-CoV-2 and related disease known as COVID-19. Widespread preventive vaccination plays an important role in effectively protecting people from viral infections and can reduce national economic costs. Purpose - to study peripheral blood cell subset composition and magnitude of humoral response in vaccinated Gam-COVID-Vac subjects. The prospective study included 352 patients, of which 194 (119 women and 75 men) underwent an immunogram study and assessed level of anti-SARS-CoV-2 antibodies. In patients, the study of the lymphocyte subset composition and estimation of anti-SARS-CoV-2 antibodies was carried out at two time points - prior to vaccination and 90 days after inoculated component 1 of the Gam-COVID-Vac vaccine. In general, vaccination was well tolerated by patients, with no serious adverse events after immunization. The reaction to the vaccine (fever, malaise, headache, local reactions) was short-term (1-2 days) and more often noted after inoculated vaccine component 2. Comparatively analyzed immunogram parameters in females before and after vaccination revealed increased relative level of T-lymphocytes (CD3+), T-helper cell subset (CD3+CD4+), increased absolute and relative level of activated CD3+CD25+ T-lymphocytes, but decreased absolute and relative level of natural killer (CD3-CD56+CD16+) and natural killer T-cell (CD3+CD56+CD16+) cell subsets as well as decreased CD147 receptor expression on T-lymphocytes. Similar patterns were also found while examining the immunogram in males exepting increased level of lymphocytes and lowered CD147 expression on both T- and B-lymphocytes. No changes in the parameters of the immune T-cell arm was found. The high efficacy of the vaccine was confirmed by development of SARS-CoV-2-specific class G antiviral antibodies in 97.5% and 92.3% of vaccinated females and males, respectively. The data obtained evidence that: 1) vaccination induces a specific humoral immune response determined three months post-vaccination, and 2) it caused no serious disturbances in the immune system functioning, which could be reflected in the peripheral blood lymphocyte subset composition. Thus, the data presented allow to conclude that Gam-COVID-Vac is effective vaccine against SARS-CoV-2 infection.Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

3.
Russian Journal of Infection and Immunity ; 12(6):1051-1060, 2022.
Article in Russian | EMBASE | ID: covidwho-2241683

ABSTRACT

Currently, as the SARS-CoV-2 pandemic evolves, there has been increasingly more attention paid to building natural and vaccine-induced immunity against SARS-CoV-2 and related disease known as COVID-19. Widespread preventive vaccination plays an important role in effectively protecting people from viral infections and can reduce national economic costs. Purpose - to study peripheral blood cell subset composition and magnitude of humoral response in vaccinated Gam-COVID-Vac subjects. The prospective study included 352 patients, of which 194 (119 women and 75 men) underwent an immunogram study and assessed level of anti-SARS-CoV-2 antibodies. In patients, the study of the lymphocyte subset composition and estimation of anti-SARS-CoV-2 antibodies was carried out at two time points - prior to vaccination and 90 days after inoculated component 1 of the Gam-COVID-Vac vaccine. In general, vaccination was well tolerated by patients, with no serious adverse events after immunization. The reaction to the vaccine (fever, malaise, headache, local reactions) was short-term (1-2 days) and more often noted after inoculated vaccine component 2. Comparatively analyzed immunogram parameters in females before and after vaccination revealed increased relative level of T-lymphocytes (CD3+), T-helper cell subset (CD3+CD4+), increased absolute and relative level of activated CD3+CD25+ T-lymphocytes, but decreased absolute and relative level of natural killer (CD3-CD56+CD16+) and natural killer T-cell (CD3+CD56+CD16+) cell subsets as well as decreased CD147 receptor expression on T-lymphocytes. Similar patterns were also found while examining the immunogram in males exepting increased level of lymphocytes and lowered CD147 expression on both T- and B-lymphocytes. No changes in the parameters of the immune T-cell arm was found. The high efficacy of the vaccine was confirmed by development of SARS-CoV-2-specific class G antiviral antibodies in 97.5% and 92.3% of vaccinated females and males, respectively. The data obtained evidence that: 1) vaccination induces a specific humoral immune response determined three months post-vaccination, and 2) it caused no serious disturbances in the immune system functioning, which could be reflected in the peripheral blood lymphocyte subset composition. Thus, the data presented allow to conclude that Gam-COVID-Vac is effective vaccine against SARS-CoV-2 infection.

4.
Medical Immunology (Russia) ; 24(5):903-910, 2022.
Article in Russian | EMBASE | ID: covidwho-2227677

ABSTRACT

To date, there is no consensus explaining the relationship between varying concentrations of IFNgamma and the severity of infection caused by SARS-CoV-2. The aim of this article was to analyze and formulate conclusions from the selected studies and publications, which, in sum, provide a potentially reasonable view on the role of IFNgamma in COVID-19 pathogenesis. This article highlights current data on the immunological role of IFNgamma which affects differentiation of naive T helper cells, acting as a polarizing factor. It activates the major histocompatibility complex (MHC) class I and II, by increasing the expression of MHC I/II subunits, inhibiting replication of the viral particles by initiating activation of interferon-stimulated genes followed by subsequent synthesis of antiviral proteins. Moreover, IFNgamma activates the production of cytokines by T cells, enhancing cytotoxic activity of the T killers. IFNgamma exerts immunostimulatory and immunomodulatory effects via STAT1, SOCS1 and PIAS genes, thus regulating activation of the JAK-STAT signaling pathway. A number of studies were considered where the patterns of changes in serum IFNgamma concentration were examined in viral infections and SARS-CoV-2. We performed a systemic analysis of the results of studies that showed a relationship between high concentrations of IFNgamma and COVID-19 severity. In a number of studies, the significantly high levels of IFNgamma in COVID-19 patients were often associated with a poor outcome of the disease. The median values of the IFNgamma concentration in severe COVID-19 were found to be significantly higher compared to the results obtained in the cases of moderate severity. It shows an increase, in parallel with viral load in the nasopharyngeal samples upon worsening of the clinical condition. Based on the data on the decreased IFNgamma concentrations in convalescent patients, the mechanism of antagonism between IFNgamma and IL-4 is considered, where the decreases serum concentrations of IFNgamma along with increasing level of IL-4 may be an indirect proof of normal adaptive immune response with subsequent development of antibodies to SARS-CoV-2 and gradual elimination of the virus from the body. Moreover, the evidence is discussed that the patients harboring some parasitic infections (Toxoplasma gondii, Cryptosporidium, Blastocystis hominis, Giardia duodenalis, Entamoeba histolytica) with persistently elevated level of IFNgamma are at reduced risk for severe course of COVID-19. Copyright © 2022, SPb RAACI.

5.
Cancer Research ; 82(12), 2022.
Article in English | EMBASE | ID: covidwho-1986491

ABSTRACT

The immunogenicity and efficacy of RNA-based vaccine platforms has been abundantly shown through their application in prophylactic SARS-CoV2 vaccines. Contrasting to mRNA based vectors, self amplifying mRNA platforms may offer dose-sparing and superior induction of T cell responses, and may also trigger distinct innate immune pathways, which may exert adjuvanting or inhibiting effects on vaccine-induced immunity. Optimal dosing for a novel self-amplifying mRNA (SAM) in a heterologous prime-boost vaccination approach consisting of Chimpanzee Adenovirus (ChAd) prime and SAM boosts was evaluated in two first-in-human phase 1/2 clinical trials assessing personalized neoantigen vaccines in patients with metastatic cancer (NCT03639714, NCT03953235). SAM vaccine dose escalation was performed to assess safety, tolerability, and immunogenicity, including administration of up to 8 SAM doses at 30, 100, or 300μg following a fixed dose of ChAd (1012 vp) over the course of a year. SAM was safe and well tolerated at all 3 dose levels, with no evidence of increasing reactogenicity with sequential doses. However, while immune monitoring via IFNγ ELISpot revealed that the 30μg SAM dose boosted T cell responses induced by the ChAd prime, the 100μg and 300μg SAM doses resulted in maintenance of T cell levels, without a clear T cell boost, suggesting a non-linear and likely bell-shaped dose-response curve to SAM in humans. Follow-up studies in non-human primates (NHPs) using a model antigen revealed dose-dependent increases in serum IFNa levels following administration of increasing SAM doses. Similarly, while multiple inflammatory cytokines were transiently increased following both ChAd and SAM administration in patients, serum IFNa levels were only increased 24h post SAM administration and correlated positively with SAM dose. Increased IFNa levels post SAM dosing suggested activation of mRNA-sensing innate immune pathways that may reduce the amplification of, and/or antigen expression by, the SAM vector and thus blunt T cell boosting at higher SAM doses. In addition, analysis of T cell responses in patients and NHPs showed increased boosting of T cell responses with longer intervals. These data lead to a reduction of the SAM dose to 30μg and adjusting SAM dosing intervals to 8 weeks in the Phase 2 portion of these clinical studies. Multiple patients have been dosed with the adjusted vaccine regimen, and preliminary data suggest robust boosting of ChAd-induced neoantigen-specific T cell responses with the selected SAM dosing regimen and the 30μg dose. We anticipate that this translational approach of adjusting clinical vaccine regimens based on strong translational immune data will increase the potency of our heterologous neoantigen vaccine, and subsequently provide more durable clinical benefit to patients with cancer.

6.
Vox Sanguinis ; 117(SUPPL 1):194-195, 2022.
Article in Spanish | EMBASE | ID: covidwho-1916368

ABSTRACT

Background: Anti-P1 is a common antibody found in the sera of P2 donors, affecting one-quarter to two-thirds of those tested. Anti-P1 is an IgM isotype antibody that is frequently found as a weak cold agglutinin. Anti-P1 antibodies that are reactive at 37 Celsius or cause in vitro hemolysis are rare. With the exception of the rare Bombay phenotype, all red cells express the H antigen. The amount of H antigen on red cells is determined by an individual's ABO type since H antigen is the precursor to both A and B antigens. The expression of the H antigen is highest in group O and lowest in group A1B (O>A2 > B > A2B > A1 > A1B). We report a case of blood discrepancy mimicking Para-Bombay due to anti-P1 and weak H antigen expression in a 46-year-old Sarawak Malay blood donor during routine blood donor regrouping with an automated immunohematology analyser. She has history of COVID19 infection in September 2021 and she completed her 1st, 2nd and booster mRNA vaccine in November 2021. Her last pregnancy was 13 years ago, and she has no history of blood transfusions. Aims: To resolve blood group discrepancies detected when using an automated immunohematology analyser. To understand the possibility of interference from natural occurring cold-reacting red cell alloantibodies during indirect antiglobulin test blood grouping. To understand the possibility of false negative in forward grouping with anti-H antisera in donors with A1B blood group. Methods: Blood donor was typed for ABO and Rh by an automated immunohematology analyser with microplates. Serological methods for antibody detection and specification were done manually with column agglutination method (gel-card) and tube method. Results: Forward grouping of the donor's first sample with an automated analyser was strongly positive for Anti-A (4+), Anti-B (4+), Anti-AB (4+) and Anti-D (4+), while reverse grouping was also strongly positive for A1-cell (3+), B-cell (3+) and O-cell (4+). Manual serological methods with gel-card and tube method yielded similar results. Anti-H showed no reaction. The first sample was negative for Direct Coomb's test (DCT). The donor's second (repeat) sample using the manual serological method yielded similar results;however, reverse grouping repeated at 37 Celcius resulted in the cessation of reactions on known cells. Anti-H showed a 1+ reaction. Antibody screening was positive and proceeded to 11 panel antibody identification with Anti-P1 identified. DCT was negative in the second sample. (P1-) and Le(a-b+) are her phenotypes. Summary/Conclusions: Anti-P1 is commonly reported as cold reacting alloantibody in patients. In this case, a combination of strong reacting anti-P1 at room temperature and commonly low H antigen volume in A1B red cells lead to a false initial suggestion of Para- Bombay phenotype. Blood grouping discrepancies detected with automation should always be repeated manually.

7.
Expert Rev Vaccines ; 20(12): 1571-1586, 2021 12.
Article in English | MEDLINE | ID: covidwho-1455077

ABSTRACT

INTRODUCTION: Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED: Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION: Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.


Subject(s)
Communicable Diseases , Genetic Vectors , Lentivirus , Vaccine Development , Viral Vaccines , Animals , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Humans , Lentivirus/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL